25 class PeptideIdentification;
26 class ProteinIdentification;
71 const std::vector<ProteinIdentification> & protein_ids,
72 const std::vector<PeptideIdentification> & peptide_ids,
73 const bool split_charge,
74 const bool top_hits_only,
75 const bool target_decoy_available,
76 const double fdr_for_targets_smaller);
93 const String & search_engine,
95 const bool prob_correct,
96 const bool split_charge,
97 std::vector<ProteinIdentification> & protein_ids,
98 std::vector<PeptideIdentification> & peptide_ids,
99 bool & unable_to_fit_data,
100 bool & data_might_not_be_well_fit);
110 bool fit(std::vector<double> & search_engine_scores,
const String& outlier_handling);
129 bool fit(std::vector<double> & search_engine_scores, std::vector<double> & probabilities,
const String& outlier_handling);
132 void fillDensities(
const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
134 void fillLogDensities(
const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
136 void fillLogDensitiesGumbel(
const std::vector<double> & x_scores, std::vector<double> & incorrect_density, std::vector<double> & correct_density);
138 double computeLogLikelihood(
const std::vector<double> & incorrect_density,
const std::vector<double> & correct_density)
const;
145 const std::vector<double>& incorrect_log_density,
146 const std::vector<double>& correct_log_density,
147 std::vector<double>& incorrect_posterior)
const;
156 const std::vector<double> &incorrect_posteriors);
165 const std::vector<double> &incorrect_posteriors,
166 const std::pair<double, double>& means);
171 return correctly_assigned_fit_param_;
177 return incorrectly_assigned_fit_param_;
183 return incorrectly_assigned_fit_gumbel_param_;
189 return negative_prior_;
195 double z = exp((params.
x0 - x) / params.
sigma);
196 return (z * exp(-1 * z)) / params.
sigma;
223 return smallest_score_;
A base class for all classes handling default parameters.
Definition: DefaultParamHandler.h:66
Implements a mixture model of the inverse gumbel and the gauss distribution or a gaussian mixture.
Definition: PosteriorErrorProbabilityModel.h:50
std::pair< double, double > pos_neg_mean_weighted_posteriors(const std::vector< double > &x_scores, const std::vector< double > &incorrect_posteriors)
double computeLLAndIncorrectPosteriorsFromLogDensities(const std::vector< double > &incorrect_log_density, const std::vector< double > &correct_log_density, std::vector< double > &incorrect_posterior) const
const String getBothGnuplotFormula(const GaussFitter::GaussFitResult &incorrect, const GaussFitter::GaussFitResult &correct) const
returns the gnuplot formula of the fitted mixture distribution.
GumbelMaxLikelihoodFitter::GumbelDistributionFitResult incorrectly_assigned_fit_gumbel_param_
Definition: PosteriorErrorProbabilityModel.h:251
PosteriorErrorProbabilityModel & operator=(const PosteriorErrorProbabilityModel &rhs)
assignment operator (not implemented)
TextFile initPlots(std::vector< double > &x_scores)
initializes the plots
const String getGaussGnuplotFormula(const GaussFitter::GaussFitResult ¶ms) const
returns the gnuplot formula of the fitted gauss distribution.
void plotTargetDecoyEstimation(std::vector< double > &target, std::vector< double > &decoy)
plots the estimated distribution against target and decoy hits
static double transformScore_(const String &engine, const PeptideHit &hit, const String ¤t_score_type)
GaussFitter::GaussFitResult incorrectly_assigned_fit_param_
stores parameters for incorrectly assigned sequences. If gumbel fit was used, A can be ignored....
Definition: PosteriorErrorProbabilityModel.h:250
double max_correctly_
peak of the gauss distribution (correctly assigned sequences)
Definition: PosteriorErrorProbabilityModel.h:259
double computeProbability(double score) const
void fillDensities(const std::vector< double > &x_scores, std::vector< double > &incorrect_density, std::vector< double > &correct_density)
Writes the distributions densities into the two vectors for a set of scores. Incorrect_densities repr...
static std::map< String, std::vector< std::vector< double > > > extractAndTransformScores(const std::vector< ProteinIdentification > &protein_ids, const std::vector< PeptideIdentification > &peptide_ids, const bool split_charge, const bool top_hits_only, const bool target_decoy_available, const double fdr_for_targets_smaller)
extract and transform score types to a range and score orientation that the PEP model can handle
bool fit(std::vector< double > &search_engine_scores, const String &outlier_handling)
fits the distributions to the data points(search_engine_scores). Estimated parameters for the distrib...
PosteriorErrorProbabilityModel(const PosteriorErrorProbabilityModel &rhs)
Copy constructor (not implemented)
bool fit(std::vector< double > &search_engine_scores, std::vector< double > &probabilities, const String &outlier_handling)
fits the distributions to the data points(search_engine_scores) and writes the computed probabilities...
static double getScore_(const std::vector< String > &requested_score_types, const PeptideHit &hit, const String &actual_score_type)
GaussFitter::GaussFitResult getIncorrectlyAssignedFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:175
double getNegativePrior() const
returns the estimated negative prior probability.
Definition: PosteriorErrorProbabilityModel.h:187
const String getGumbelGnuplotFormula(const GaussFitter::GaussFitResult ¶ms) const
returns the gnuplot formula of the fitted gumbel distribution. Only x0 and sigma are used as local pa...
void fillLogDensities(const std::vector< double > &x_scores, std::vector< double > &incorrect_density, std::vector< double > &correct_density)
Writes the log distributions densities into the two vectors for a set of scores. Incorrect_densities ...
double negative_prior_
stores final prior probability for negative peptides
Definition: PosteriorErrorProbabilityModel.h:255
void fillLogDensitiesGumbel(const std::vector< double > &x_scores, std::vector< double > &incorrect_density, std::vector< double > &correct_density)
Writes the log distributions of gumbel and gauss densities into the two vectors for a set of scores....
~PosteriorErrorProbabilityModel() override
Destructor.
void tryGnuplot(const String &gp_file)
try to invoke 'gnuplot' on the file to create PDF automatically
void processOutliers_(std::vector< double > &x_scores, const String &outlier_handling) const
transform different score types to a range and score orientation that the model can handle (engine st...
GaussFitter::GaussFitResult correctly_assigned_fit_param_
stores gauss parameters
Definition: PosteriorErrorProbabilityModel.h:253
double max_incorrectly_
peak of the incorrectly assigned sequences distribution
Definition: PosteriorErrorProbabilityModel.h:257
static void updateScores(const PosteriorErrorProbabilityModel &PEP_model, const String &search_engine, const Int charge, const bool prob_correct, const bool split_charge, std::vector< ProteinIdentification > &protein_ids, std::vector< PeptideIdentification > &peptide_ids, bool &unable_to_fit_data, bool &data_might_not_be_well_fit)
update score entries with PEP (or 1-PEP) estimates
PosteriorErrorProbabilityModel()
default constructor
GaussFitter::GaussFitResult getCorrectlyAssignedFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:169
static double getGumbel_(double x, const GaussFitter::GaussFitResult ¶ms)
computes the gumbel density at position x with parameters params.
Definition: PosteriorErrorProbabilityModel.h:193
double smallest_score_
smallest score which was used for fitting the model
Definition: PosteriorErrorProbabilityModel.h:261
double getSmallestScore() const
returns the smallest score used in the last fit
Definition: PosteriorErrorProbabilityModel.h:221
bool fitGumbelGauss(std::vector< double > &search_engine_scores, const String &outlier_handling)
fits the distributions to the data points(search_engine_scores). Estimated parameters for the distrib...
std::pair< double, double > pos_neg_sigma_weighted_posteriors(const std::vector< double > &x_scores, const std::vector< double > &incorrect_posteriors, const std::pair< double, double > &means)
GumbelMaxLikelihoodFitter::GumbelDistributionFitResult getIncorrectlyAssignedGumbelFitResult() const
returns estimated parameters for correctly assigned sequences. Fit should be used before.
Definition: PosteriorErrorProbabilityModel.h:181
double computeLogLikelihood(const std::vector< double > &incorrect_density, const std::vector< double > &correct_density) const
computes the Likelihood with a log-likelihood function.
Representation of a peptide hit.
Definition: PeptideHit.h:31
A more convenient string class.
Definition: String.h:34
This class provides some basic file handling methods for text files.
Definition: TextFile.h:21
int Int
Signed integer type.
Definition: Types.h:76
Main OpenMS namespace.
Definition: FeatureDeconvolution.h:22
struct of parameters of a Gaussian distribution
Definition: GaussFitter.h:40
double sigma
parameter sigma of Gaussian distribution (width)
Definition: GaussFitter.h:54
double x0
parameter x0 of Gaussian distribution (center position)
Definition: GaussFitter.h:51
struct to represent the parameters of a gumbel distribution
Definition: GumbelMaxLikelihoodFitter.h:38