OpenMS
Loading...
Searching...
No Matches
EmgScoring.h
Go to the documentation of this file.
1// Copyright (c) 2002-present, OpenMS Inc. -- EKU Tuebingen, ETH Zurich, and FU Berlin
2// SPDX-License-Identifier: BSD-3-Clause
3//
4// --------------------------------------------------------------------------
5// $Maintainer: Hannes Roest $
6// $Authors: Hannes Roest $
7// --------------------------------------------------------------------------
8
9#pragma once
10
14
18
20
21#include <vector>
22#include <cmath> // for isnan
23
24namespace OpenMS
25{
26
35 {
36
37 public :
38
39 EmgScoring() = default;
40
41 ~EmgScoring() = default;
42
45 void setFitterParam(const Param& param)
46 {
48 }
49
52 {
53 return EmgFitter1D().getDefaults();
54 }
55
57 template<typename SpectrumType, class TransitionT>
59 {
60 double avg_score = 0;
61 bool smooth_data = false;
62
63 for (Size k = 0; k < transition_group.size(); k++)
64 {
65 // get the id, then find the corresponding transition and features within this peakgroup
66 String native_id = transition_group.getChromatograms()[k].getNativeID();
67 Feature f = mrmfeature.getFeature(native_id);
68 OPENMS_PRECONDITION(f.getConvexHulls().size() == 1, "Convex hulls need to have exactly one hull point structure");
69
70 //TODO think about penalizing aborted fits even more. Currently -1 is just the "lowest" pearson correlation to
71 // a fit that you can have.
72 double fscore = elutionModelFit(f.getConvexHulls()[0].getHullPoints(), smooth_data);
73 avg_score += fscore;
74 }
75
76 avg_score /= transition_group.size();
77 return avg_score;
78 }
79
80 // Fxn from FeatureFinderAlgorithmMRM
81 // TODO: check whether we can leave out some of the steps here, e.g. gaussian smoothing
82 double elutionModelFit(const ConvexHull2D::PointArrayType& current_section, bool smooth_data) const
83 {
84 // We need at least 2 datapoints in order to create a fit
85 if (current_section.size() < 2)
86 {
87 return -1;
88 }
89
90 // local PeakType is a small hack since here we *need* data of type
91 // Peak1D, otherwise our fitter will not accept it.
92 typedef Peak1D LocalPeakType;
93
94 // -- cut line 301 of FeatureFinderAlgorithmMRM
95 std::vector<LocalPeakType> data_to_fit;
96 prepareFit_(current_section, data_to_fit, smooth_data);
97 std::unique_ptr<InterpolationModel> model_rt;
98 double quality = fitRT_(data_to_fit, model_rt);
99 // cut line 354 of FeatureFinderAlgorithmMRM
100
101 return quality;
102 }
103
104 protected:
105 template<class LocalPeakType>
106 double fitRT_(std::vector<LocalPeakType>& rt_input_data, std::unique_ptr<InterpolationModel>& model) const
107 {
108 EmgFitter1D fitter_emg1D;
110 // Construct model for rt
111 // NaN is checked in fit1d: if (std::isnan(quality)) quality = -1.0;
112 return fitter_emg1D.fit1d(rt_input_data, model);
113 }
114
115 // Fxn from FeatureFinderAlgorithmMRM
116 // TODO: check whether we can leave out some of the steps here, e.g. gaussian smoothing
117 template<class LocalPeakType>
118 void prepareFit_(const ConvexHull2D::PointArrayType & current_section, std::vector<LocalPeakType> & data_to_fit, bool smooth_data) const
119 {
120 // typedef Peak1D LocalPeakType;
121 PeakSpectrum filter_spec;
122 // first smooth the data to prevent outliers from destroying the fit
123 for (const auto& pa : current_section)
124 {
125 LocalPeakType p;
126 using IntensityType = typename LocalPeakType::IntensityType;
127 p.setMZ(pa.getX());
128 p.setIntensity(IntensityType(pa.getY()));
129 filter_spec.push_back(p);
130 }
131
132 // add two peaks at the beginning and at the end for better fit
133 // therefore calculate average distance first
134 std::vector<double> distances;
135 for (Size j = 1; j < filter_spec.size(); ++j)
136 {
137 distances.push_back(filter_spec[j].getMZ() - filter_spec[j - 1].getMZ());
138 }
139 double dist_average = std::accumulate(distances.begin(), distances.end(), 0.0) / (double) distances.size();
140
141 // append peaks
142 Peak1D new_peak;
143 new_peak.setIntensity(0);
144 new_peak.setMZ(filter_spec.back().getMZ() + dist_average);
145 filter_spec.push_back(new_peak);
146 new_peak.setMZ(filter_spec.back().getMZ() + dist_average);
147 filter_spec.push_back(new_peak);
148 new_peak.setMZ(filter_spec.back().getMZ() + dist_average);
149 filter_spec.push_back(new_peak);
150
151 // prepend peaks
152 new_peak.setMZ(filter_spec.front().getMZ() - dist_average);
153 filter_spec.insert(filter_spec.begin(), new_peak);
154 new_peak.setMZ(filter_spec.front().getMZ() - dist_average);
155 filter_spec.insert(filter_spec.begin(), new_peak);
156 new_peak.setMZ(filter_spec.front().getMZ() - dist_average);
157 filter_spec.insert(filter_spec.begin(), new_peak);
158
159 // To get an estimate of the peak quality, we probably should not smooth
160 // and/or transform the data.
161 if (smooth_data)
162 {
163 GaussFilter filter;
164 Param filter_param(filter.getParameters());
165 filter.setParameters(filter_param);
166 filter_param.setValue("gaussian_width", 4 * dist_average);
167 filter.setParameters(filter_param);
168 filter.filter(filter_spec);
169 }
170
171 // transform the data for fitting and fit RT profile
172 for (Size j = 0; j != filter_spec.size(); ++j)
173 {
174 LocalPeakType p;
175 p.setPosition(filter_spec[j].getMZ());
176 p.setIntensity(filter_spec[j].getIntensity());
177 data_to_fit.push_back(p);
178 }
179 }
180
182 };
183
184}
185
std::vector< PointType > PointArrayType
Definition ConvexHull2D.h:52
const Param & getParameters() const
Non-mutable access to the parameters.
const Param & getDefaults() const
Non-mutable access to the default parameters.
void setParameters(const Param &param)
Sets the parameters.
Exponentially modified gaussian distribution fitter (1-dim.) using Levenberg-Marquardt algorithm (Eig...
Definition EmgFitter1D.h:23
QualityType fit1d(const RawDataArrayType &range, std::unique_ptr< InterpolationModel > &model) override
return interpolation model
Scoring of an elution peak using an exponentially modified gaussian distribution model.
Definition EmgScoring.h:35
EmgScoring()=default
void setFitterParam(const Param &param)
Definition EmgScoring.h:45
double elutionModelFit(const ConvexHull2D::PointArrayType &current_section, bool smooth_data) const
Definition EmgScoring.h:82
Param fitter_emg1D_params_
Definition EmgScoring.h:181
Param getDefaults()
Get default params for the Emg1D fitting.
Definition EmgScoring.h:51
double calcElutionFitScore(MRMFeature &mrmfeature, MRMTransitionGroup< SpectrumType, TransitionT > &transition_group) const
calculate the elution profile fit score
Definition EmgScoring.h:58
double fitRT_(std::vector< LocalPeakType > &rt_input_data, std::unique_ptr< InterpolationModel > &model) const
Definition EmgScoring.h:106
~EmgScoring()=default
void prepareFit_(const ConvexHull2D::PointArrayType &current_section, std::vector< LocalPeakType > &data_to_fit, bool smooth_data) const
Definition EmgScoring.h:118
An LC-MS feature.
Definition Feature.h:46
const std::vector< ConvexHull2D > & getConvexHulls() const
Non-mutable access to the convex hulls.
This class represents a Gaussian lowpass-filter which works on uniform as well as on non-uniform prof...
Definition GaussFilter.h:47
void filter(MSSpectrum &spectrum)
Smoothes an MSSpectrum containing profile data.
A multi-chromatogram MRM feature.
Definition MRMFeature.h:26
Feature & getFeature(const String &key)
get a specified feature
The representation of a group of transitions in a targeted proteomics experiment.
Definition MRMTransitionGroup.h:42
Size size() const
Definition MRMTransitionGroup.h:99
std::vector< ChromatogramType > & getChromatograms()
Definition MRMTransitionGroup.h:160
The representation of a 1D spectrum.
Definition MSSpectrum.h:44
Management and storage of parameters / INI files.
Definition Param.h:46
void setValue(const std::string &key, const ParamValue &value, const std::string &description="", const std::vector< std::string > &tags=std::vector< std::string >())
Sets a value.
A 1-dimensional raw data point or peak.
Definition Peak1D.h:30
void setIntensity(IntensityType intensity)
Mutable access to the data point intensity (height)
Definition Peak1D.h:86
void setMZ(CoordinateType mz)
Mutable access to m/z.
Definition Peak1D.h:95
A more convenient string class.
Definition String.h:34
size_t Size
Size type e.g. used as variable which can hold result of size()
Definition Types.h:97
#define OPENMS_PRECONDITION(condition, message)
Precondition macro.
Definition openms/include/OpenMS/CONCEPT/Macros.h:94
Main OpenMS namespace.
Definition openswathalgo/include/OpenMS/OPENSWATHALGO/DATAACCESS/ISpectrumAccess.h:19