Scoring functions used by MRMScoring. More...
Typedefs | |
Type defs | |
typedef std::map< int, double > | XCorrArrayType |
Cross Correlation array. More... | |
Functions | |
Helper functions | |
OPENSWATHALGO_DLLAPI double | NormalizedManhattanDist (double x[], double y[], int n) |
Calculate the normalized Manhattan distance between two arrays. More... | |
OPENSWATHALGO_DLLAPI double | RootMeanSquareDeviation (double x[], double y[], int n) |
Calculate the RMSD (root means square deviation) More... | |
OPENSWATHALGO_DLLAPI double | SpectralAngle (double x[], double y[], int n) |
Calculate the Spectral angle (acosine of the normalized dotproduct) More... | |
OPENSWATHALGO_DLLAPI XCorrArrayType | calcxcorr_legacy_mquest_ (std::vector< double > &data1, std::vector< double > &data2, bool normalize) |
OPENSWATHALGO_DLLAPI XCorrArrayType | normalizedCrossCorrelation (std::vector< double > &data1, std::vector< double > &data2, int maxdelay, int lag) |
OPENSWATHALGO_DLLAPI XCorrArrayType | calculateCrossCorrelation (std::vector< double > &data1, std::vector< double > &data2, int maxdelay, int lag) |
Calculate crosscorrelation on std::vector data without normalization. More... | |
OPENSWATHALGO_DLLAPI XCorrArrayType::iterator | xcorrArrayGetMaxPeak (XCorrArrayType &array) |
Find best peak in an cross-correlation (highest apex) More... | |
OPENSWATHALGO_DLLAPI void | standardize_data (std::vector< double > &data) |
Standardize a vector (subtract mean, divide by standard deviation) More... | |
OPENSWATHALGO_DLLAPI void | normalize_sum (double x[], unsigned int n) |
divide each element of x by the sum of the vector More... | |
Scoring functions used by MRMScoring.
Many helper functions to calculate crosscorrelations between data
typedef std::map<int, double> XCorrArrayType |
Cross Correlation array.
OPENSWATHALGO_DLLAPI XCorrArrayType OpenSwath::Scoring::calculateCrossCorrelation | ( | std::vector< double > & | data1, |
std::vector< double > & | data2, | ||
int | maxdelay, | ||
int | lag | ||
) |
Calculate crosscorrelation on std::vector data without normalization.
OPENSWATHALGO_DLLAPI XCorrArrayType OpenSwath::Scoring::calcxcorr_legacy_mquest_ | ( | std::vector< double > & | data1, |
std::vector< double > & | data2, | ||
bool | normalize | ||
) |
Calculate crosscorrelation on std::vector data - Deprecated! Legacy code, this is a 1:1 port of the function from mQuest
OPENSWATHALGO_DLLAPI void OpenSwath::Scoring::normalize_sum | ( | double | x[], |
unsigned int | n | ||
) |
divide each element of x by the sum of the vector
OPENSWATHALGO_DLLAPI XCorrArrayType OpenSwath::Scoring::normalizedCrossCorrelation | ( | std::vector< double > & | data1, |
std::vector< double > & | data2, | ||
int | maxdelay, | ||
int | lag | ||
) |
Calculate crosscorrelation on std::vector data (which is first normalized) NOTE: this replaces calcxcorr
Referenced by MRMTransitionGroupPicker::computeQuality_().
OPENSWATHALGO_DLLAPI double OpenSwath::Scoring::NormalizedManhattanDist | ( | double | x[], |
double | y[], | ||
int | n | ||
) |
Calculate the normalized Manhattan distance between two arrays.
Equivalent to the function "delta_ratio_sum" from mQuest to calculate similarity between library intensity and experimental ones.
The delta_ratio_sum is calculated as follows:
OPENSWATHALGO_DLLAPI double OpenSwath::Scoring::RootMeanSquareDeviation | ( | double | x[], |
double | y[], | ||
int | n | ||
) |
Calculate the RMSD (root means square deviation)
The RMSD is calculated as follows:
Calculate the Spectral angle (acosine of the normalized dotproduct)
The spectral angle is calculated as follows:
OPENSWATHALGO_DLLAPI void OpenSwath::Scoring::standardize_data | ( | std::vector< double > & | data | ) |
Standardize a vector (subtract mean, divide by standard deviation)
OPENSWATHALGO_DLLAPI XCorrArrayType::iterator OpenSwath::Scoring::xcorrArrayGetMaxPeak | ( | XCorrArrayType & | array | ) |
Find best peak in an cross-correlation (highest apex)
Referenced by MRMTransitionGroupPicker::computeQuality_().
OpenMS / TOPP release 2.3.0 | Documentation generated on Tue Jan 9 2018 18:22:15 using doxygen 1.8.13 |